PHYSICAL REVIEW E

VOLUME 51, NUMBER 5

MAY 1995

Instability of weakly nonlinear chaotic structures

V.V. Vecheslavov
Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia
(Received 9 August 1994)

A linear oscillator driven by periodic perturbation is considered. An infinite connected chaotic
structure in the phase plane emerges when the perturbation is of the form of a periodic é function and
the exact resonance condition is fulfilled [Zaslavsky, Sagdeev, D. A. Usikov, and A. A. Chernikov,
Weak Chaos and Quasi-Regular Patterns (Cambridge University Press, Cambridge, 1991)]. These
structures are shown to be unstable and completely destroyed if the duration of the perturbation is

arbitrarily short but finite.
PACS number(s): 05.45.+b

A linear oscillator driven by a periodic nonlinear per-
turbation is often used as a dynamical model for some
physical problems. Its motion is described by the Hamil-
tonian
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where the perturbation V(z,p,t + T) = V(z,p,t) is a
time-periodic function. In Eq. (1) the nonlinearity de-
pends (as € — 0) on the weak perturbation only and,
if a resonance occurs, we have a weakly nonlinear reso-
nance system on which the extension of the Kolmogorov-
Arnol’d-Moser theory is impossible. The dynamics of the
systems, which may be very unexpected, was extensively
studied (see, e.g., [1]).

Let the perturbation in Eq. (1) contain only one of the
harmonics. Then

H(z,p,t) =

2 2 .2
1)-#% + € cos(z — Q). (2)
If we put wg = 0 the model describes a single strongly
nonlinear resonance (SNR) which is completely inte-
grable with no trace of a chaos [2]. Yet, for any wo # 0
(as € — 0), nonlinearity becomes weak and the motion
drastically changes. If /wg is an integer, the model de-
scribes a single weakly nonlinear resonance (WNR) which
has a very complicated chaotic component [3].

In the present paper we are going to discuss in detail
another case of Eq. (1) with an infinite number of har-
monics

H(z,p,t) =

p? + w2 z?
2

where dr(t) is the periodic § function with period T' and
the perturbation parameter € << 1 is small. The model
(3) may represent the motion of a charged particle in
both a magnetic field (Larmor’s frequency wg) and the
field of a perpendicularly propagating wave packet [1]. If
we put wg = 0 the model describes a strongly nonlin-
ear system with an infinite set of interacting resonances
and their chaotic layers. For a sufficiently small per-
turbation, e << 1, the layers of different resonances are
separated from each other by stable invariant tori and an
unbounded motion is impossible [4]. But for any wo # 0
and T = 27 /nwo with any integer n an infinite and uni-

H(z,p,t) = + € cosz o7 (t), (3)

1063-651X/95/51(5)/5106(3)/$06.00 51

form connected chaotic web emerges on the phase plane
[1]. The unbounded motion of a particle along this web
is possible. Note that the web also exists when the co-
efficient of the § function in Eq. (3) is not purely cosz,
but is given an explicit sinusoidal time dependence [5] or
any periodic function f(z) [6]. The web of Eq. (3) is
unstable against detuning from the exact resonance con-
dition (27/T — nwo # 0 ), as was shown in [7] (see also
[1]). We study here another kind of instability due to a
finite kick’s width.

Let us replace the § function in Eq. (3) by another one
F(t) which has the form of a periodic rectangular func-
tion of length A and height 1/A, located in the middle
of every period T. Then

2 2,2
Hn(w7p7t) = P +;07$ +e¢ COS:L‘F(t)
=wp I + € cos(p cos 0) F(t), (4)
where
a
F(t) = ?0 + Zak cos(knwot) ,
k>1
_ nwo, . sin(knwol/2) _

ar = - ) (knwoA/Z) ) k= 0, 1, 2, veen o

In Eq. (4) ¢ = pcosf, p = —pwp sinf, and p =

(2I/wo)/? is the amplitude of the unperturbed oscilla-
tions. The exact resonance condition 7 = 27 /nw, with
some integer n is supposed to be fulfilled. This condition
is the only one and the model describes a single WNR
[compare with Eq. (2)].

Introducing a new slow phase ¢ = 6 —wqt, a new time
T = enwy t/2 7, expanding the perturbation in a series of
Bessel functions, and averaging over the fast oscillations,
we arrive at a first-order resonance Hamiltonian (for more
detail see [1, 2]):

ﬁA,n(I’ [Z) A) = Jo(p)
+2 3 (=1)** 5 Jan(p)

k>1
sin(knwoA/2)

(knwel/2) cos(kn o), (5)
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where kn are even. For A = 0 the perturbation has the
form of a periodic § function as in Eq. (3) and we will

use for this case a special symbol fL;,n:
Hsn(I,9) = Han(I, 0, A = 0)
=Jo(p) +2 Z (=1)*+'3 Jen(p) cos(kn ) ,
k>1
(6)

with kn even.
Expanding sin(knwoA/2)/(knwoA/2) and regrouping
terms in Eq. (5) we obtain

~ ~ A m I,(p wo 2m
Han(I,0,8) = Hsn(L0) + ) C‘;Tn(-k—l)3 ( 02 ) ;
m>1 :

(7)

Aom(L,0) =2 D (=1) T H+™ 4 (p) (kn) *™ cos(kn ) ,
k>1

where kn are even. Using 2m multiple integration of
A2 (I, p) with respect to ¢ and representing the results
in terms of I?5,H(I ,¢) and its derivatives, we obtain an
interesting relation between the two Hamiltonians:

(woA/2)°™ 8*™
(2m T 1)! awzde,n(Ia ‘P) .

ﬁA,n(Ia (P,A) = Z

m>0
(8)

A part of the infinite and uniform web for the resonant
case n = 4 and F'(t) = ér(t) is reproduced in Fig. 1. This
so-called “kicked Harper model” (KHM) is extensively
studied now by many researchers [8].

A compact form of the first-order resonance Hamilto-
nian (6) may be derived by means of the following iden-
tity ([9], m > 1 is any integer):

FIG. 1. Computer simulation of model Eq. (4) with
n =4, wo =1, and € = /2. The perturbation F(t) is a pe-
riodic § function. X,P are slow variables (9) shown at
t = 0 mod T with initial values in the vicinity of the saddle
point X = P = 7r/\/§

Jo(p) +2 Z (=1)™* T (p) cos(2mkd)

k>1
m—1 .
=l E cos [pcos (‘E +19)] .
m 4 m
j=0

For KHM, by setting in this identity m = 2, ¥ = ¢
+m/4 and using slow variables

X =pcosp, P =—pwgsingp, (9)

we obtain

Hs4(X,P) = cos (%) cos (%) ) (10)

It coincides with the results of [1] up to a rotation of
the Cartesian coordinate axes. Exactly the same form
has the first-order resonance Hamiltonian for a model of
Eq. (2) with the only harmonics sufficiently far from the
origin X = P = 0. Its structure and instability were
considered in detail in [3].

This resonance structure is characterized by an infinite
lattice of periodic trajectories (fixed points on a plane
X, P) both stable [sin(X/v2) =~ sin(P/v/2) ~ 0] and
unstable [cos(X/+/2) ~ cos(P/+/2) = 0], the latter being
connected by separatrices with their chaotic layers. The
infinite WNR structure in Fig. 1 is qualitatively different
from the SNR one. As is well known, the latter consists
of a “chain of islands” which extends in the direction of
phase variable only and is strictly bounded.

The SNR structure is universal and stable under suf-
ficiently weak perturbations [4]. Unlike this, the WNR
structure is neither universal (the structure is different
for different n) nor stable. The first example for this was
a model Eq. (2) [3].

To see the instability of the KHM structure let us add
to Eq. (10) a term linear in X:

Hs (X, P) = cos (%) cos (%) +aX. (11)

Then the vertical separatrices (X =const) all remain
unchanged but the horizontal ones (P =const) are de-
stroyed because of the difference AFI,;A in Hs 4 between
the two neighboring fixed points. Remarkably, an arbi-
trarily small perturbation (@ — 0 ) qualitatively changes
the structure by making all the rows of resonant cells
disconnected by narrow vertical gaps. For small a > 0
the width of a gap at X = 37r/\/§ mod 2v/27x and P =
0 mod 2v/2x is

Aﬁa,‘;

AXm 2|2t
I8H5,4/8X

‘ ~ 27 |a] . (12)

The motion inside a gap is unbounded in P. One can re-
alize such an “accelerating regime” for KHM by adding
to the Hamiltonian (4) the time-dependent resonant per-
turbation
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FIG. 2. The same as in Fig. 1 with a finite A/T = 0.2.
Insert: enlarged part of the first open gap and an invariant
trajectory inside it.

AH, = T cos(f2t), (13)
Wo

where Q = wg (the case of a linear resonance in nonlinear
webs, see [3]).

Now, let the kick in Eq. (4) be of finite width A. The
phase portrait of the KHM for A/T = 0.2 is given in
Fig. 2 (the other parameters are as in Fig. 1). One
may see the qualitative change in the phase plane struc-
ture: the infinite lattice of fixed points remains almost
unchanged but the chaotic web is completely destroyed
by the extremely complicated net of gaps. In Fig. 3 the
levels of the resonance Hamiltonian Ha 4 (5) are shown.
Remarkably, the analytical construction reproduces well
the most principal features of the KHM phase structure
of Fig. 2 (without chaotic components).

To clarify the origin of the gaps in Figs. 2 and 3,
we use the relation Eq. (8) between the two resonance
Hamiltonians Ha 4, Hsq and Eq. (10) for the latter.
The following calculations will be simplified if we restrict
ourselves to the saddle points where

cos(X/V2) = cos(P/V2) = 0;
sin(X/v/2) ~ sin(P/v2) ~ +1.

In the saddle points of system (4) with n = 4 we have

40

FIG. 3. The levels of the resonance Hamiltonian H A,4 US-
ing the first 15 terms in Eq. (5). All parameters are the same
as in Fig. 2.

~ XP A2
Hp 4(X, Py~ -2 (“’0 )

6 2
XP, ., _, woA\*
z P — .
+ g (X7 + +7)( 5

(14)
This expression shows that the origin of the gaps in Figs.
2 and 3 is related to the difference in I?IAA between the
two neighboring fixed points. We can estimate the width
of the gap from Eq. (14) and more accurately from Eq.
(5). For several low lying (nearest to the origin X = P =
0) gaps in Fig. 3 both approximations give close results.

The dependence of the resonance Hamiltonian H. A4
on X, P leads also to a change of the frequencies of small
oscillations and to a decrease in the width of chaotic lay-
ers when moving away from the origin. For low gaps the
chaotic layers may close the gaps completely but from
some distance the gaps remain open and block the diffu-
sion (the first open gap is shown in Fig. 2).

In conclusion, we note that the weakly nonlinear
chaotic structure is an infinite connected web only if the
perturbation has the form of the § function and the exact
resonance condition is fulfilled. As was shown above, the
web is not stable. Under a weak additional perturbation
or for a finite kick’s width it becomes disconnected by
many narrow gaps.

The author is very grateful to B.V. Chirikov and E.A.
Perevedentsev for discussions and helpful advice.

[1] G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov, and A.A.
Cheznikov, Weak Chaos and Quasi-Regular Patterns
(Cambridge University Press, Cambridge, 1991), p.253.

[2] A. Lichtenberg and M. Lieberman, Regular and Stochastic
Motion (Springer, Berlin, 1983).

[3] B.V. Chirikov and V.V. Vecheslavov, in From Phase Tran-
sitions to Chaos, The Structure of a Weakly Nonlinear
Resonance, edited by Geza Gyoérgyi, Imre Condor, Lazlo
Sasvary, and Tamds Tél (World Scientific Publishing, Sin-
gapore, 1992).

[4] B.V. Chirikov, Phys. Rep. 52, 263 (1979).

[5] V.V. Afanas’ev, R.Z. Sagdeev, D.A. Usikov, and

G.M. Zaslavsky, Phys. Lett. A 151, 276 (1992).

[6] L.Y. Yu and R.H. Parmenter, Chaos 2, 581 (1992).

[7] C.F.F. Karney, Phys. Fluids. 21, 1584 (1978); 22, 2188
(1979).

[8] P. Leboeuf et al., Phys. Rev. Lett. 85, 3076 (1990); R.
Lima and D. Shepelyansky, <bid. 67, 1377 (1991); T.
Geisel, R. Ketzmerick, and G. Petschel, ibid. 87, 3635
(1991); R. Artuso, G. Casati, and D. Shepelyansky, ibid.
68, 3826 (1992); R. Artuso et al., ibid. 69, 3302 (1992).

[9] A.P. Prudnikov, J.A. Brichkov, and O.I. Marichev, In-
tegrals and Series, Special Functions (Moskva, Nauka,
1983), p. 752 (in Russian.)



